Image recognition via two-dimensional random projection and nearest constrained subspace

نویسندگان

  • Liang Liao
  • Yanning Zhang
  • Stephen J. Maybank
  • Zhoufeng Liu
  • Xin Liu
چکیده

We consider the problem of image recognition via two-dimensional random projection and nearest constrained subspace. First, image features are extracted by a two-dimensional random projection. The two-dimensional random projection for feature extraction is an extension of the 1D compressive sampling technique to 2D and is computationally more efficient than its 1D counterpart and 2D reconstruction is guaranteed. Second, we design a new classifier called NCSC (Nearest Constrained Subspace Classifier) and apply it to image recognition with the 2D features. The proposed classifier is a generalized version of NN (Nearest Neighbor) and NFL (Nearest Feature Line), and it has a close relationship to NS (Nearest Subspace). For large datasets, a fast NCSC, called NCSC-II, is proposed. Experiments on several publicly available image sets show that when well-tuned, NCSC/NCSC-II outperforms its rivals including NN, NFL, NS and the orthonormal `2-norm classifier. NCSC/NCSC-II with the 2D random features also shows good classification performance in noisy environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Point-to-Subspace Query in ℓ1 with Application to Robust Object Instance Recognition

Motivated by vision tasks such as robust face and object recognition, we consider the following general problem: given a collection of low-dimensional linear subspaces in a high-dimensional ambient (image) space, and a query point (image), efficiently determine the nearest subspace to the query in ` distance. In contrast to the naive exhaustive search which entails large-scale linear programs, ...

متن کامل

Stratified sampling for feature subspace selection in random forests for high dimensional data

For high dimensional data a large portion of features are often not informative of the class of the objects. Random forest algorithms tend to use a simple random sampling of features in building their decision trees and consequently select many subspaces that contain few, if any, informative features. In this paper we propose a stratified sampling method to select the feature subspaces for rand...

متن کامل

Efficient Point-to-Subspace Query in ℓ1: Theory and Applications in Computer Vision

Motivated by vision tasks such as robust face and object recognition, we consider the following general problem: given a collection of low-dimensional linear subspaces in a high-dimensional ambient (image) space and a query point (image), efficiently determine the nearest subspace to the query in ` distance. We show in theory that Cauchy random embedding of the objects into significantlylower-d...

متن کامل

Efficient Point-to-Subspace Query in $\ell^1$: Theory and Applications in Computer Vision

Motivated by vision tasks such as robust face and object recognition, we consider the following general problem: given a collection of low-dimensional linear subspaces in a high-dimensional ambient (image) space and a query point (image), efficiently determine the nearest subspace to the query in ` distance. We show in theory that Cauchy random embedding of the objects into significantlylower-d...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Visual Communication and Image Representation

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014